Chromosomal Aberrations Induced in Human Lymphocytes by in vitro Irradiation with $^{60}Co;{gamma}-rays$
Ahn, Yong-Chan;Ha, Sung-Whan;
ABSTRACT
As guides to decision-making in the management of the victims in case of acute whole body or partial body radiation exposure, we studied the relationship between radiation dose and the frequency of chromosomal aberrations observed in peripheral lymphocytes that were irradiated in vitro with $^{60}Co;{gamma}-rays$ at doses ranging from 2Gy to 12Gy. The yields of cells with unstable chromosomal aberrations (dicentric chromosomes, ring chromosomes, and acentric fragment pairs) were 32% at 2Gy, 47% at 4Gy, 80% at 6Gy, 94% at 8Gy, and 100% at 10Gy and over. Ydr, which reflect average dose to the whole body in case of acute whole body exposure, were 1.373 at 2Gy, 0.669 at 4Gy, 1.734 at 6Gy, 2.773 at 8Gy, 3.746 at 10Gy and 5.454 at 12Gy. The relationship between radiation dose (D) and the frequency of dicentric plus ring chromosomes per cell(Ydr) could be expressed as $Ydr=9.322{times}10^{-2}/Gy {times}D+2.975{times}10^{-2}/Gy^2{times}D^2$. Qdr, which are used in estimating dose of partial body exposure and dose of past exposure, were 1.166 at 2Gy, 1.436 at 4Gy, 2.173 at 6Gy, 2.945 at 8Gy, 3.746 at 10Gy and 5.454 at 12Gy. To see how confidently this dosimetry system may be used, we obtained Qdr values from those who received one fraction of homogenous partial body irradiation of 1.BGy, 2.5Gy, and 7.OGy therapeutically; in vivo Qdr values were 1.109, 1.222 and 2.222 respectively. The estimated doses calculated from these in vivo Qdr values using the equation $Qdr=Ydr/(1- e^{-Ydr})$ were 1.52Gy, 2.48Gy, and 6.54Gy respectively, which were very close to the doses actually given.