| Home | E-Submission | Sitemap | Contact Us |  
top_img
J Radiat Prot > Volume 32(1); 2007 > Article
Journal of Radiation Protection 2007;32(1):15-0.
COMPUTATIONAL DETERMINATION OF NEUTRON DOSE EQUIVALENT LEVEL AT THE MAZE ENTRANCE OF A MEDICAL ACCELERATOR FACILITY
Kim, Hong-Suk;Lee, Jai-Ki;
ABSTRACT
An empirical formula fur the neutron dose equivalent at the maze entrance of medical accelerator treatment rooms was derived on the basis of a Monte Carlo simulation. The simulated neutron dose equivalents around the Varian medical accelerator by the MCNPX code were employed. Two cases of target rotational planes were considered: parallel and perpendicular to maze walls. Most of the maximum neutron dose equivalents at the doorway were found when the target rotational planes were parallel to maze walls and the beams were directed to the inner maze entrances. The neutron dose equivalents at the outer maze entrances were calculated for about 698 medical accelerator facilities which were generated from the geometry configurations of running treatment rooms, based on such gantry rotation that produces the maximum neutron dose at the doorway. The results calculated with the empirical formula in this study were compared with those calculated by the Kersey method for 7 operating facilities. It was found that the maximum disagreement between the calculation of this study and that of the Kersey method was a factor of 8.54 with the value calculated by the Kersey method exceeding that of this study. It was concluded that the kersey method estimated the neutron dose equivalent at the doorway computed by MCNPX more conservatively than this study technique.
TOOLS
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Share:      
METRICS
1,040
View
11
Download
Editorial Office
#319, Hanyang Institute of Technology Bldg., 222 Wangsimni-ro, Seongdong-gu,Seoul, Republic of Korea
Tel: +82-2-2297-9775   Fax: +82-2-2297-9776
Email: jrpr.editorial@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © by Korean Association for Radiation Protection. Developed in M2PI